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We continue the development of the super-grid-scale model initiated in [T. Colonius, H.
Ran, A super-grid-scale model for simulating compressible flow on unbounded domains,
J. Comput. Phys. 182 (1) (2002) 191–212] and consider its application to linear hyperbolic
systems. The super-grid-scale model consists of two parts: reduction of an unbounded to a
bounded domain by a smooth coordinate transformation and a damping of those scales. For
linear problems the super-grid scales are analogous to spurious numerical waves. We
damp these waves by high-order undivided differences. We compute reflection coefficients
for different orders of the damping and find that significant improvements are obtained
when high-order damping is used.

In numerical experiments with Maxwell’s equations, we show that when the damping is
of high order, the error from the boundary condition converges at the order of the interior
scheme. We also demonstrate that the new method achieves perfectly matched layer-like
accuracy.

When applied to linear hyperbolic systems the stability of the super-grid-scale method
follows from its construction. This makes our method particularly suitable for problems
for which perfectly matched layers are unstable. We present results for two such problems:
elastic waves in anisotropic media and isotropic elastic waves in wave guides with trac-
tion-free surfaces.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the recent years there have been significant developments in the construction of accurate and efficient techniques to
truncate unbounded domains encountered in applications in computational wave propagation, see, for example, the review
articles [2–4]. The Maxwell system and the wave equation have proven popular for design of truncation techniques. The re-
sult is that for these equations there are excellent techniques available, particularly high-order local boundary conditions
(HOLBCs) [5,6] and the perfectly matched layer (PML) [7]. Unfortunately, the generalization of these methods to other wave
systems has not been completely successful. An important but negative stability result for the PML was established by Béc-
ache et al. [8]. They found that the shape of the slowness curve for a given hyperbolic system determines whether or not a
stable PML can be constructed. So far no equivalent result exists for HOLBCs but the recent results on the discrete equiva-
lence between these and PML [2] indicate that the stability of HOLBCs could be similar to that of PML.
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Accuracy, stability and efficiency are the three key properties that must be taken into account in designing domain trun-
cation techniques. For PML, accuracy is achieved by the ‘‘perfect matching” together with strong damping or wide layers.
HOLBCs are constructed from sequences that converge to exact boundary conditions and thus become accurate if enough
terms in the sequences are used. In the construction of both PML and HOLBCs, stability is secondary and has to be established
for each application. This makes them less suitable for applications where the physical properties, models and governing
equations change or are under development. Examples of such applications are seismic waves, aero acoustics, weather-pre-
diction, atmospheric and climate modeling, ocean circulation, hydro acoustics and turbulence modeling.

In this paper we continue the development of the super-grid-scale (which we hereafter denote SuGS not to confuse it
with sub-grid-stress) framework initiated in [1]. The SuGS model, originally developed for compressible flow, exploits the
connection between coordinate mapping from bounded to unbounded domains and the filtering of the equations of motion
to construct models that damp disturbances outside the near field. The two building blocks of the SuGS model are reduction
of the unbounded domain (by windowing, coordinate transformation, grid stretching or slowing down of waves) and damp-
ing of the super-grid scales that cannot be represented on the bounded domain (the name, the super-grid-scale model, was
chosen in [1] to convey the analogy with sub-grid modeling in large eddy simulations (LES)). In [1], where compressible flow
was considered, the model used for the super-grid scales consisted of a parabolic damping term, motivated by an expansion
of a product of filtered fields used in tensor diffusivity models for LES.

In this paper we focus on linear hyperbolic systems. As in [1] we reduce unbounded domains by a smooth coordinate
transformation. The reduced problem consists of the original problem inside the computational domain, and a variable coef-
ficient problem inside a slowing-down layer. Before discretization, the solutions inside the computational domain are iden-
tical. After discretization, the slowing down of waves causes an exponential (in time) decrease in the resolution of waves
inside the layer. The result is that spurious numerical waves are reflected and pollute the solution in the computational do-
main. These super-grid scales are numerical and here we use high-order undivided differences to damp them. We find that
when high-order accurate numerical methods are used inside the computational domain the use of a high-order undivided
difference allows grid convergence at the rate of the interior scheme. In addition, as we start out with a hyperbolic system
and add dissipation, it is easy to show that stability will be guaranteed.

The idea of coordinate transformation and damping is not new. Grosch and Orszag [9] studied pure grid-stretching and
later dismissed it (in the words of [10]‘‘It has been shown [9] that mapping by itself is doomed to fail for radiation prob-
lems . . .”). The high-order super-grid model we will present below can be seen as a generalization of the sponge layers stud-
ied by Israeli–Orzag [10] and Kosloff and Kossloff [11]. It is also an extension of Karni’s slowing down and damping operator
layer [12] and, Colonius and Ran’s original super-grid-scale method [1] (when applied to linear problems). All these previous
layers have been constructed with physical damping/dissipation in mind. However, as we will see below, if the damping is
constructed with the discretized problem in mind, better results can be achieved. We note that an approach similar to the
one discussed here has been used to construct non-reflecting boundary conditions by Visbal et al. for implicit compact
schemes in [13,14].

2. One dimension

2.1. Grid stretching, slowing down of waves, converging characteristics and regularization of functions with steep gradients

Consider the transport equation
@u
@t
¼ a

@u
@x
; �2 < x 6 0; t > 0; a < 0;

uðx;0Þ ¼ u0ðxÞ; supp u0 ¼ x 2 X � ½�2;�1�;
uð�1; tÞ ¼ 0:

ð1Þ
The solution of (1) is the right going wave uðx; tÞ ¼ u0ðat þ xÞwhich starts to exit the computational domain at time t ¼ 1=jaj.
The simplest possible non-reflecting boundary condition is to extend the computational domain by adding a layer in the
right half plane, say to x ¼ L. This allows for the simulation of waves inside the domain X up to time ð1þ 2LÞ=jaj without
influence from the boundary. The drawback of this approach is that the size of the layer must be proportional to the desired
final simulation time. Thus, if we intend to keep the computational efforts spent in the layer fixed, relative to those in the
interior, as L increases; we need to keep the degrees of freedom of the discretized problem in the layer fixed.

In what follows it will be convenient to replace the constant coefficient equation (1) on the extended domain with an
equivalent variable coefficient equation on a spatially fixed domain. To accomplish this the coordinate transformation
z ¼ zðxÞ, defined as the backwards solution from x ¼ L to x ¼ 0 of the ordinary differential equation
dzðxÞ
dx
¼ gðzðxÞ; xÞ; zðLÞ ¼ l ð2Þ
is used. With this coordinate transformation (1) reads
@u
@t
¼ a

dz
dx

@u
@z
¼ agðzÞ @u

@z
: ð3Þ
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Our goal is to gradually slow down waves in the layer. Thus it is suitable to choose gðzÞ
gðzÞ ¼

1; z < 0;
ĝ;

0 6 z 6 l;

eL; z ¼ l:

8>>><
>>>:
In this paper we will for the most part use
ĝðzÞ ¼ 1� rðzÞ;

rðzÞ � ð1� eLÞ 1� 1� z
l

� �p
� �q

:
ð4Þ
Note that L!1 as eL ! 0, or vice versa. The smoothness of the mapping is determined by p and q, and should be chosen to
match the order of accuracy of the numerical scheme.

From (3) it is clear that the residence time in the layer can be controlled by making L large or eL small. In the continuous
setting, the procedure outlined above is an exact non-reflecting boundary condition up to a time determined only by L. How-
ever, after discretization the situation is different and unless care is taken, there will be significant spurious numerical reflec-
tions. The numerical difficulty arises when the wave speed in (3) tends to zero, as this causes the number of points per
wavelength to approach zero.

Consider, for example, the case with a ¼ �1; eL ¼ 0; q ¼ 1; p ¼ 1 for z 2 ½0; l� with l ¼ 1, then (3) becomes
@u
@t
¼ �ð1� zÞ @u

@z
;

uðz;0Þ ¼ f ðzÞ:
ð5Þ
The characteristics of this equation are defined as the solutions of the ordinary differential equation
dzðtÞ
dt
¼ �gðzÞ

����
p¼1;q¼1

¼ �ð1� zðtÞÞ: ð6Þ
For initial data zð0Þ ¼ z0 the solution is
zðtÞ � 1 ¼ ðz0 � 1Þe�t ; ð7Þ
or z0 ¼ ðz� 1Þet þ 1. Since we can solve (6) backward in time, for any point ðz; tÞ, there is a unique relation between z and t
for any given z0. Thus the solution to (5) is
uðz; tÞ ¼ f ðz0Þ ¼ f ððz� 1Þet þ 1Þ: ð8Þ
The spatial derivatives of this function grow exponentially in time.
In Fig. 1 the characteristics for different values of p and q are plotted. As p and q increase, the characteristics converge

faster. From Eq. (8) and Fig. 1 it can be seen that if, at some later time T, f ðzÞ should be resolved to the same degree as at
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Fig. 1. Converging characteristics.
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the initial time, then the number of degrees of freedom must increase exponentially. This exponential loss of resolution is the
principal cause for the reflections when (3) is used as a boundary condition.

The phenomenon of spurious waves in finite-difference schemes, and their relations to the numerical dispersion relation
are well understood and have been studied extensively [15–18]. In this setting, spurious is synonymous to poorly resolved and
we therefore expect that direct application of the procedure above will suffer from severe pollution from backwards prop-
agating spurious waves. In fact, if eL ! 0, and a centered finite-difference discretization is used, it can be seen (see, e.g.
[17,18]) that the discrete energy of the incident wave will be conserved and reflected as spurious waves. We illustrate with
an example.

2.2. A numerical example

To illustrate the typical numerical behavior for waves that are rapidly decelerated, we solve (3) with zero initial data on
z ¼ ½�1; l�, with l ¼ 1=10. The boundary condition is taken as uð�1; tÞ ¼ sinð5ptÞ and we take eL ¼ 10�4. In space we discretize
on a uniform grid with h ¼ 1=100. We use a diagonal norm summation by parts operator (tabulated in Appendix C4 in [19])
that is fourth-order accurate on the boundary and eight-order accurate in the interior. The boundary condition is enforced
using the simultaneous approximation technique, see e.g. [19]. To advance the solution in time, we use the classic fourth-
order Adams–Bashforth method. The time step, k ¼ h=5, is chosen based on the stability properties of the problem without
the layer.

We advance the solution up to time 5. At this time the solution should be u ¼ sinð5pðx� 5ÞÞ, but as can be seen in Fig. 2(a)
spurious waves have been created due to the spatially varying wave speed. If we try to refine the grid, the amplitude of the
perturbation remains the same; only the frequency changes (they are �1 waves on the grid).

2.3. Regularization by artificial viscosity

The behavior of the solution as the characteristics converge is related to that of the development of discontinuous shock
solutions in non-linear conservation laws (see, e.g. Chapter 8 in [20]). For problems with shocks, the most straightforward
regularization is to add a suitable amount of artificial viscosity. Such regularization will remove spurious oscillations, but
will also reduce the accuracy of the solution around the discontinuity and spoil the conservation. For the purpose of non-
reflection and slowing down of waves considered here, the accuracy of solution inside the layer is of no importance as long
as the errors do not exit the layer. We know that the discrete dispersion relation only supports backwards propagation out of
the layer for waves that are highly under resolved; thus if such waves can be damped efficiently there should be little
reflection.

To investigate the effect of regularization in our numerical example above we introduce artificial viscosity in the form of
an undivided difference:
Fig. 2.
in the l
Note th
version
@u
@t
¼ agðzÞ @u

@z
� gðzÞ

X
k2K

ð�1Þkh2k�1ck
@k
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rðzÞ @

ku
@zk

 !
: ð9Þ
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To the left: spurious reflections due to slowing down of waves in the layer in z 2 ½0; 0:1�. To the right: A second-order damping term has been added
ayer and almost all oscillations have been removed and the exact and computed solution coincide. The blue line defines the slowing down function.
at there are only ten grid points in the layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
of this article.)
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Here k is an element in a set of integers K. We say that the order of the damping term is 2k but note that the perturbation to
the equation is actually Oðh2k�1Þ. The rationale of this scaling is that in the fully discretized problem, the size of the damping
term will not depend on the time step or grid spacing. We can quickly determine the maximal allowable size on a coarse grid
and then make the production run on a finer grid. Note that even though the coefficient of the damping term is small,
Oðh2k�1Þ, the effect on plus–minus waves will be large. For the special case g ¼ r ¼ ck ¼ 1 each term in the sum will be
of magnitude h�122k when acting upon a uj ¼ ð�1Þj, (again, the h�1 will be multiplied by Dt after time discretization is
performed).

The effect of the added term is dramatic. For example, if the experiment above is repeated with K ¼ f1g and c1 ¼ 0:4 sig-
nificantly improved results, displayed in Fig. 2(b), are obtained. In one dimension there does not seem to be any benefit in
using a higher-order damping, order 0 can be made as good as any other order if c0 is chosen to give maximal damping. In
multiple dimensions, however, there is a substantial advantage in using higher-order damping terms as they cause a smaller
impedance mismatch and less reflection. This will be demonstrated in Section 3.

2.4. Boundary conditions and well-posedness of the new model

Before discussing the above model in several dimensions we briefly address the well-posedness of Eq. (9) together with
boundary conditions on the strip z 2 ½�1; l�. For simplicity we consider the problem
@u
@t
¼ �gðzÞ @u

@z
� gðzÞsk

@k

@zk
rðzÞ @

ku
@zk

 !
;

uðz;0Þ ¼ f ðzÞ 2 C1ð�1; lÞ; t P 0; z 2 ½�1; l�:
ð10Þ
Here sk ¼ ð�1Þkh2k�1ck and k is an integer greater than or equal to one. It is assumed that gðzÞ;rðzÞ 2 C10 ð�1; lÞ,
gðzÞP gmin > 0 and that g goes to one and r and its derivatives to zero at z ¼ �1. The positivity of g allows us to define
the scalar product and norm
ðu; vÞg ¼
Z l

�1

uðxÞvðxÞ
gðxÞ dx; kuk2

g � ðu; uÞg;
where u and v are real-valued functions.
The energy method applied to (10) gives:
1
2

d
dt
kuk2

g ¼ ðu;utÞg ¼ �
1
2

u2� �l

�1 � sk u;
@k

@zk
r @

ku
@zk

 ! !
g

¼ �1
2

u2� �l

�1 � sk u
@k�1

@zk�1 r @
ku
@zk

 !" #l

�1

þ sk uz;
@k�1

@zk�1 r @
ku
@zk

 ! !
g

¼ �1
2

u2� �l

�1 � sk u
@k�1

@zk�1 r @
ku
@zk

 !" #l

�1

þ sk uz
@k�2

@zk�2 r @
ku
@zk

 !" #l

�1

� � � � ð�1Þksk

ffiffiffiffi
r
p @ku

@zk














g

: ð11Þ
At the left boundary, all boundary terms except u2ð�1Þ vanish along with the damping function r. At the right boundary we
must make all but the first term vanish, i.e. we must choose k boundary conditions from the pairs
uðl; tÞ ¼ 0;
@k�1

@zk�1 r @
ku
@zk

 !
ðl; tÞ ¼ 0; ð12Þ

uzðl; tÞ ¼ 0;
@k�2

@zk�2 r @
ku
@zk

 !
ðl; tÞ ¼ 0; ð13Þ

..

.

@k�1u
@zk�1 ðl; tÞ ¼ 0; r @

ku
@zk
ðl; tÞ ¼ 0: ð14Þ
If both sides of (12) are used as boundary conditions, the right-hand side of (10) is still a semibounded operator. However,
the resulting solution is not unique (the solution is over specified when kþ 1 boundary conditions are enforced). For the
solution to be unique, the right-hand side of (10) should be a maximal semibounded operator. This will be the case if we
choose precisely k boundary conditions from (12)–(14). We summarize this statement in the following corollary.

Corollary 1. The initial-boundary value problem defined by Eq. (10) and the boundary condition uð�1; tÞ ¼ 0; t P 0, together with
k boundary conditions chosen from the k pairs (12)–(14), is well-posed. Moreover, the solution uðz; tÞ is unique, as smooth as the
initial data, and lies in the space of C1ð�1; lÞ functions that satisfy the chosen combination of boundary conditions.
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Proof 1. The corollary follows from Theorem 7.8.1 in [21]. h

Remark 2. Note that when damping layers are added on both sides of the domain, it is convenient to make r and g periodic
and use periodic boundary conditions.
3. Multiple dimensions

The extension to d dimensions is straightforward. Let u ¼ uðx; tÞ be a n dimensional real-valued solution to the linear con-
stant coefficient (strongly, strictly or symmetric) hyperbolic system
@uðx; tÞ
@t

þ
Xd

j¼1

Aj
@uðx; tÞ
@xj

¼ 0; t P 0; x 2 Rd: ð15Þ
Assume that the initial data
uðx;0Þ ¼ u0ðxÞ
are supported in the strip �H < x1 < �h and that we are only interested in simulating the solution in the half plane x1 < 0. To
truncate the domain we follow the one-dimensional procedure outlined in Section 2 and add a slowing-down layer and arti-
ficial viscosity:
@uðx; tÞ
@t

þ gðx1ÞA1
@uðx; tÞ
@x1

þ
Xd

j¼2

Aj
@uðx; tÞ
@xj

¼ �gðx1Þ
X
k2K

ð�1Þkh2k�1ck
@k

@xk
1

rðx1Þ
@ku
@xk

1

 !
;

uðx;0Þ ¼ u0ðxÞ; t P 0; x 2 ð�1; lÞ � Rd�1:

ð16Þ
Eq. (16) can be seen as a generalization of the sponge layers studied by Israeli–Orzag [10] (recovered with g ¼ 1 and
K ¼ f0;2g), Kosloff and Kosslof’s absorbing layer, [11], (g ¼ 1 and K ¼ f0g) Karni’s slowing-down and damping operator
layer [12] (K ¼ f0g) and Colonius and Ran’s super-grid-scale method (K ¼ f1g), [1]. The model with pure stretching, studied,
for example, by Grosch and Orszag, [9], is obtained by setting r to zero.

A relevant question is whether there is a benefit of using the generalized model (16), rather than one of the previous mod-
els mentioned? If there is a benefit, it must arise due to the smaller magnitude of the coefficients in the higher-order damp-
ing terms. To investigate this, we compute the reflection coefficients for different choices of K.

3.1. Computed reflection coefficients

For one-dimensional problems with constant damping and stretching and with K ¼ 0;1, it is easy to write down the solu-
tions inside and outside the layer and perform an analytic study of the reflection coefficient of a given layer. When the order
of the damping operator increases, it becomes increasingly difficult to write down (manageable) closed from solutions in the
layer. Hence, rather than perusing the (semi) analytic study of reflection coefficients pursued in [10–12] we adopt the ideas
in [22], where direct simulations are used to compute reflection coefficients.

To compute the reflection coefficients for different K we solve the wave equation as a first-order system (15), defined by
the matrices
A1 ¼
0 1 0
1 0 0
0 0 0

2
64

3
75; A2 ¼

0 0 1
0 0 0
1 0 0

2
64

3
75; u ¼

p

u1

u2

2
64

3
75:
Here p is the pressure and ðu1;u2Þ are the velocities in the x and y directions (we use the notation ðx1; x2Þ ¼ ðx; yÞ). The speed
of sound is set to 1. We start the computation by placing the initial data
pðx; y; 0Þ ¼ pe
�ðx�xs Þ2þðy�ys Þ2

v2 ; u1ðx; y;0Þ ¼ u2ðx; y; 0Þ ¼ 0;
localized around a point ðxs; ysÞ and record the pressure time histories in receiver points ðxr ; yrÞ along the dashed line in Fig. 3.
Three setups, depicted in Fig. 3, are considered: (a) a domain with a damping layer in 0 < x 6 l, (b) a domain with a solid wall
at x ¼ 0 and (c) a free space solution. For setups (a) and (b) the solution at the receivers can be decomposed as:
playerðxr; yr ; tÞ ¼ pfree-spaceðxr; yr ; tÞ þ prefl: layerðxr ; yr; tÞ;
psolidðxr; yr ; tÞ ¼ pfree-spaceðxr; yr ; tÞ þ prefl: solidðxr ; yr; tÞ;
where pfree-spaceðxr ; yr ; tÞ is obtained from setup (c). At any point ðx; yÞ, playerðx; y; tÞ and psolidðx; y; tÞ can be expressed in terms of
its Fourier transform:



Fig. 3. Schematic pictures of the three cases.

Table 1
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p̂layerðx; y; f Þ ¼
Z 1

�1
e�i2pftplayerðx; y; tÞdt;

p̂solidðx; y; f Þ ¼
Z 1

�1
e�i2pftpsolidðx; y; tÞdt:
This allows us to define the reflection coefficient
R̂ðf ; hrÞ ¼
p̂refl: layerðf ; hrÞ
p̂refl: solidðf ; hrÞ

; ð17Þ
where hr is defined in Fig. 3.

Remark 3. Note that the solid wall case is only used to normalize the computation. An alternative is to send in planar waves
at different angles but with the same amplitude, but this would require more than three computations.
3.1.1. Details of the computation
For all three setups we introduce a grid ðxi; yjÞ ¼ ðih; jhÞ with h ¼ 1=200 and place the initial data in ðxs; ysÞ ¼ ð�2;0Þ with

v ¼ 0:1. The receivers recording the pressure time histories are placed in ðxr; yrÞ ¼ ð�2; mhÞ, m ¼ 1; . . . ;1600. For all setups,
periodic boundary conditions (placed sufficiently far away) are used in the y direction. For (c) we use periodic boundary con-
ditions (placed sufficiently far away) in the x direction and for (b) we use symmetry conditions. For setup (a) a layer,
0 6 x 6 0:2, is added (that is, 40 grid points in the layer). The layer is terminated by periodic boundary conditions. The spatial
derivatives are approximated by 12th-order accurate, centered, finite-difference stencils and time integration is performed
using the standard fourth-order accurate Runge–Kutta method. The solution is advanced up to time 30 (i.e. 8000 time steps)
with a time step Dt ¼ 7=8h. The damping and stretching are described by (4) with eL ¼ 10�4 and p ¼ q ¼ 4. We consider four
layers: pure stretching, zero, second and eight-order damping. The maximal value of the damping, see Table 1, was chosen
empirically by requiring the damped solutions to be stable in time with the same time step as the free-space problem.

In this example we use periodic boundary conditions so it is straightforward to discretize the damping terms, for
k ¼ 0;2;4; . . . we use:
@k

@xk
rðxÞ @

ku
@xk

 !
� ðDþD�Þk=2riðDþD�Þk=2ui; ð18Þ
and for k ¼ 1;3;5; . . .
@k

@xk
rðxÞ @

ku
@xk

 !
� ðDþD�Þðk�1Þ=2ðDþð

ri þ rði�1Þ=2

2
ÞD�ÞðDþD�Þk�1ui: ð19Þ
For non-periodic domains it is customary to design the damping operators so that they are semi-definite by requiring that
ðDþÞkum ¼ 0 and ðD�Þkum ¼ 0 in k grid points to the left and to the right of the first and final grid point. A thorough discussion
of how to design semi-definite artificial viscosity operators can be found in [23].
g coefficients used for the computation of reflection coefficients.

f;g f0g f1g f4g

0 500 1 0:01
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Remark 6. Finally, in this example we have used a 12th-order discretization in space, a fourth-order discretization in time
and perturbed the equations by layers of order zero, two and eight by adding absorbing layers. As pointed out by one of the
referees, the (relatively) low-order accuracy in time could potentially effect the results when the eight-order damping is
used. That is, if a higher-order time discretization had been used the difference in performance between the eight-order layer
and the other might have been even more striking.
3.2. Numerical study of grid convergence

In the previous section we showed results that indicate that the reflection of the proposed layer is reduced by using a
higher-order damping. In this section we present numerical experiments with Maxwell’s equations that demonstrate that
grid convergence at the order of the interior method is obtained when a high-order damping is used in a thin, fixed-width,
layer around the computational domain. We also demonstrate that the results compare well to those obtained with a PML.

3.2.1. Hagstrom’s non-reflecting boundary condition problem
A challenging test problem for non-reflecting boundary conditions for the wave equation, Maxwell’s equations, or the lin-

earized Euler equations is the problem used by Hagstrom and coauthors in e.g. [24,25]. Here we use a version of the problem
consisting of a rectangle occupying the domain ðx; yÞ 2 ½�2:1;2:1� � ½0;1�. The rectangle is periodic in y and open in the x
direction. The task is to terminate the domain at x ¼ �2:1 with some non-reflecting boundary conditions. A schematic of
the problem is depicted in Fig. 5. The exact solution is designed to contain large amounts of glancing and evanescent waves
and is built up as a sum of y-periodic pulses:
Fig. 5.
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where r2
k ¼ x2 þ ðy� kÞ2.

Here we choose to solve Maxwell’s equation for the TE-mode (with the damping and slowing down added)
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Ezðx; y;0Þ ¼ E0
z ðx; yÞ; Hxðx; y; 0Þ ¼ H0

x ðx; yÞ; Hyðx; y;0Þ ¼ H0
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ð22Þ
for which the exact solution, using (20), can be expressed as
Ez ¼
@u
@t
; Hx ¼ �

@u
@y
; Hy ¼

@u
@x
:

As in Section 2 we can use the construction of the layer to establish well-posedness of the layer model. Let u and v be the
real scalar functions defined on the domain defined in (22), and let ðv; uÞg and kukq denote the weighted scalar product and
norm
ðu; vÞq ¼
Z ð2:1þlÞ

�ð2:1þlÞ

Z 1

0

uv
q

dydx; ðu; uÞq ¼ kuk
2
q: ð23Þ
source turned off t < 0

4.2
1.0

layer layer

Schematic picture of Hagstrom’s problem. Note that the domain (and the initial data) is periodic in the y-direction so that the solution, at late times,
consists of glancing waves (the solution at time 20 is displayed in Fig. 9).
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The following lemma is easily proved by use of the equations and integration by parts:

Lemma 1. Assume g P gmin > 0 and r P 0. Then the solution to (21) on the domain (22) with periodic boundary conditions in x
and y satisfies the estimate
1
2

d
dt

Ezk k2
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: ð24Þ
3.2.2. Discretization and results
Eqs. (21) are discretized on the grid ðxi; yjÞ ¼ ðih; jhÞ; i ¼ �N; . . . ;N; j ¼ 0; . . . ;M;h ¼ 1=M;2:1 ¼ hN; with spatial derivatives

approximated by the eight-order accurate stencil:
@uðxi; yj; tÞ
@x

� Dx
0 1� h2

6
Dx
þDx
� þ

h4

30
ðDx
þDx
�Þ

2 � h6

140
ðDx
þDx
�Þ

3

 !
uijðtÞ:
The damping terms are approximated by (19) with k ¼ 1 and (18) with k ¼ 4. In time we discretize using an eight-order
accurate Runge–Kutta method [26]. The unbounded direction, x, is truncated by adding layers in jxj 6 2:1þ l with damping
functions
gðxÞ ¼ 1� rðxÞ;

rðzÞ ¼ ð1� eLÞð1� ð1� L�jxj
l Þ

pÞq; L < jxj < Lþ l;

0; jxj 6 L:

(
ð25Þ
Here L ¼ 2:1 and p ¼ q ¼ 4. In both directions the boundary conditions are taken to be periodic. In a first set of computations
h is set to h ¼ 1=ð25rÞ; r ¼ 2;3;6;9 and the layer width is fixed to l ¼ 0:6. The damping is either second-order with c1 ¼ 5 or
eight-order with c4 ¼ 0:05 (the values are chosen as the maximal values allowed by time stability without damping) and
eL ¼ 10�4. The initial data and the exact solution at later times are computed using routines (described in [25]) generously
supplied by Thomas Hagstrom. The solution is advanced up to time 100 and we measure the discrete L2 error
e2ðtÞ ¼ ðh2
XX

ðv ijðtÞ � vexactðxi; yj; tÞÞ
2Þ

1
2; t ¼ 2;4; . . . ;100:
Here v ¼ Ez;Hx;Hy.
In Figs. 6 and 7 the errors for Hx and Ez are plotted as a function of time for the second- and eight-order damping. As can

be seen from the dashed lines in Fig. 6 the results for the second-order damping appear to converge at a rate close to h1=2 for
both Hx and Ez. This rate is lower than expected (the damping term is aOðhÞ perturbation) and although there is convergence
the error levels are large. A comparison of Fig. 6(a) and (b) reveals that there is no significant difference in the layers per-
formance for Ez and Hx (the error for Hy is very similar to that of Ez and we limit our self to plot the latter only).

For the eight-order damping layer, the error of Hx is reduced as h8 under grid refinement and, as can be seen in Fig. 7(a),
the error only increases slightly over the duration of the simulation. The error in Ez also follows the h8 trend, but only up to
time 	 40; then it starts to increase, see Fig. 7(b). There are two differences in the equation governing Ez and Hx, the stretch-
ing and the damping, which could explain the difference in error levels. When a damping term was added to the middle
equation in (21) there was little, if any, change in the error levels of Hx and we therefore believe that the difference is caused
0 20 40 60 80 100
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Fig. 6. Errors for computations with second-order damping and h ¼ 1=ð25rÞ; r ¼ 2;3;6;9. The dashed lines are 	h1=2 for different r.
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Fig. 7. Errors for computations with eight-order damping and h ¼ 1=ð25rÞ; r ¼ 2;3;6;9. The dashed lines are 	 h8 for different r.

Error using 2nd order damping at time 20, h=1/75�2�101200.51�-.10-.1Error using 8th order damping at time220, h=1/75
by the slowing down than by the damping. Fig. 8 shows the fact that the error appears to be of high frequency on the grid and
also indicates that the slowing down generates more high frequency waves than can be damped. Nevertheless, the improve-
ment in performance gained by the use of the eight-order damping is impressive. The difference in performance can be
clearly seen in Figs. 8 and 9 where Ez and the error in Ez are plotted at time 20 for the two different damping terms.

We also study how the error behaves as the layer thickness changes. We fix h ¼ 1=ð25 � 6Þ and take the layer width
l ¼ p � 6h; p ¼ 5; . . . ;15: The results for the second- and eight-order damping are plotted in Fig. 10(a) and (b), respectively.
It is clear that the error decays very fast for the eight-order damping. It is also clear that unless the layer is wide enough,
there can be a significant reduction in the performance of the layer. Presently we do not have a precise criterion to determine
‘‘how wide is wide enough”; however, it appears from simulations that the sufficient width decreases slightly (much slower
than h�1) as h is decreased. Therefore it is possible, but not convenient, to establish the sufficient layer width by a fast com-
putation on a coarse grid.

3.2.3. Comparison with a perfectly matched layer
As a final test, we perform computations using a PML to truncate problem described in Section 3.2.1. The equations

describing the PML are given in Appendix B.1. The values of the damping parameters in the PML have been optimized by
linear sampling and the only remaining free parameter is the width of the PML.

In Fig. 11 we present comparisons between the error in Ez and Hx at two grid refinements for PML of width
l ¼ 5=25;7=25;9=25 and the eight-order damping layer, described above, width l ¼ 15=25. The widths of the PML have been
chosen such that the memory requirements do not supersede those of the damping layer (the PML requires 5/3 times the
memory). In Fig. 11(a) it can be seen that for Ez the two thinner PMLs perform worse than the damping layer at early times
and comparably or slightly better at late times. The widest PML performs about as well as the damping layer at early times
and better at later times. The results for Hx are displayed in Fig. 11(b), here only the results of the widest PML are comparable
to the damping layer.
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Fig. 10. Errors for computations with second- and eight-order damping for a fixed grid size, h ¼ 1=ð25 � 6Þ and varying layer width, 6h � p; p ¼ 5; . . . ;15: The
error decays almost monotonically for both cases but much faster for the eight-order damping. Note that the y-axis is linear to the left and logarithmic to
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Fig. 9. Ez at time 20 for h ¼ 1=75 for the second-order damping (upper) and for the eight-order damping (lower). The upper figure has Oð1Þ errors while the
lower is ‘‘exact” in the eye norm.
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From this single example it is not possible to make general conclusions about the relative accuracy and efficiency of the
two layers, but the fact that the damping layer (in its simplicity) performs as well as the PML for this difficult problem sug-
gests that further investigation of its use for Maxwell’s equations is warranted.

3.3. Elastic waves

The results of the previous section are very encouraging, but the most significant benefits of the SuSG are expected for
problems for which PML is unstable. In this section we demonstrate how the model can be used for two such problems:
propagation of elastic waves in anisotropic media and in isotropic media with free surface boundary conditions.

3.3.1. Elastic waves in an anisotropic media: An example of blowup of PML and non-blowup for the super-grid-scale layer
The equations of motion in a continuum with no body forces can be written, with Einstein’s summation convention,
q
@2ui

@t2 ¼
@rij

@xj
: ð26Þ
We work in two dimensions and therefore the indices i; j assume the values f1;2g. Here q is the density, u1 and u2 are the
displacements and rij is the stress tensor, which is related to the tensor of deformation
eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
;

by Hooke’s law rij ¼ cijklekl; where cijkl is the tensor of elastic constants. Using the symmetry of the tensors rij, ekl and cijkl and
the scheme
ð11Þ $ ð1Þ; ð22Þ $ ð2Þ; ð12Þ $ ð21Þ $ ð3Þ;
which replaces two indices by one and four indices by two, we can write Hooke’s law as rn ¼ cnmem;n;m ¼ 1;2;3; where
cmn ¼ cnm.

To simplify the comparison with PML for this problem we reformulate the second-order formulation (26) as a first-order
system:
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Here v1;v2 are the velocities and v3 ¼ r1;v4 ¼ r2;v5 ¼ r3, the stresses. We simplify the problem by considering an ortho-
tropic media with principal axis coinciding with the x1 and x2 axes. For such media c13 ¼ c23 ¼ 0.

The stability of PML for the system (27) has been studied in [8,27]. In [8] necessary conditions on the coefficients cij for the
stability of Berénger’s split-field PML have been derived. By adding the so-called complex frequency shift it was possible to
expand the parametric space of cij for which stable PML models can be constructed, see [27]. However, even with these
improvements, there are still many medium for which PML cannot be used. Here we consider an ‘‘unstable” medium defined
by the values q ¼ 1; c11 ¼ 4; c22 ¼ 20; c33 ¼ 2; c12 ¼ 7:5:

To illustrate the stability properties of PML and the high-order super-grid-scale layer we solve (27) on the domain
ðx1; x2Þ 2 ½�5;5�2 and truncate the domain in both x1 and x2 directions using either the perfectly matched layer given by
Eq. (28) in [27] or the layer (16) with an eight-order damping term. A schematic description of the computational setup
is found in Fig. 12(a).

The discretization is the same as in Section 3.2.1. The damping function in the PML is given by fd1ðx1Þ; d2ðx2Þg ¼ 10rðzÞ
where r is the function (25) with eL ¼ 0; L ¼ 5; l ¼ 45h; p ¼ q ¼ 2. The damping in the eight-order layer is also defined by
(25), but with eL ¼ 10�4; L ¼ 5; l ¼ 45h; p ¼ q ¼ 4; the strength of the damping is c4 ¼ 0:04. The grid spacing is h ¼ 10=405
and the time step Dt ¼ 1=60. The solution is advanced up to time 30 and started with the initial data:
v1ðx; y;0Þ ¼ x2e�50ððx1þ0:5Þ2þðx2�0:5Þ2Þ;

v2ðx; y;0Þ ¼ �x1e�50ððx1þ0:5Þ2þðx2�0:5Þ2Þ;

v3 ¼ v4 ¼ v5 ¼ 0:
In Fig. 13 the velocity in the x1 direction, v1, is plotted at different time instants. At first it appears that the PML absorbs all
waves well, but around time 15 the solution starts to grow inside the PML, at time 20 (lower right in the figure) the insta-
bility begins to pollute the interior and at the end of the computation the solution has grown to 1012. Contrary to the PML,
the damping layer not only absorbs the waves efficiently, but also remains stable throughout the computation.
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Fig. 12. To the left: schematic setup. To the right: Square root of the sum of the squares of the l2 norm of v i; i ¼ 1; . . . ;5; as a function of time for the PML
layer and the super-grid-scale layer. The black line is the PML, the dashed lines are for second-order damping and the solid for eight-order damping. The
blue, green and red are for refinements h ¼ 10=ð135rÞ; r ¼ 3;4;5. The PML computation uses r ¼ 3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Top row: The velocity in the x1 direction is plotted at times 1, 2, 6 and 20, for the damping layer. Bottom row: The velocity in the x1 direction is
plotted at times 1, 2, 6 and 20, for the PML. The color map the ranges from 0.2 (bright red) to �0.2 (light blue). The white contours at �0.001 and 0.001
illustrates that the reflections are small as the waves exit the domain and gets damped in the layers. As can be seen in the last figure, the PML becomes
unstable at late times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In Fig. 12(b) the rms of v i; i ¼ 1; . . . ;5; as a function of time for the PML layer and the eight-order super-grid-scale layer
are plotted. In the same figure we compare the rms of v i; i ¼ 1; . . . ;5; for different refinements for the second- and eight-or-
der damping. As for the previous experiments, the high-order damping outperforms the low-order damping and has con-
verged to the true solution on the coarsest grid.

3.3.2. Application to the elastic wave equation in second-order form
For the particular case of an isotropic media the elastic coefficients can be reformulated in terms of the Lamé coefficients

c11 ¼ c22 ¼ 2lþ k, c12 ¼ k, c33 ¼ l. Eq. (26) then simplifies to
q
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; ð28Þ
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: ð29Þ
We consider the case of an elastic wave guide, unbounded in the x1 direction. On the top (x2 ¼ xmax
2 ) and bottom (x2 ¼ xmin

2 )
the boundary conditions are either of Dirichlet type
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u1ðx1; x2; tÞ ¼ u2ðx1; x2; tÞ ¼ 0; x2 ¼ xmin
2 ; xmax

2 ;
or traction-free
k
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2 ; xmax
2 :
The stability properties of a perfectly matched layer model for the frequency domain version of the above problem with two
free surfaces were recently studied by Skelton et al. in [28]. Skelton et al. showed that some of the surface-to-surface waves,
present in elastic wave guides with free surfaces, have oppositely directed phase and group velocities. They found that these
backwards propagating waves deteriorate the absorption of their PML. They also suggested that the problem could be rem-
edied by constructing a frequency-dependent PML with a damping whose sign depends on the frequency. As we will se be-
low, the loss in performance in frequency domain translates into the instabilities in the time domain. Unfortunately it is
inconvenient to split the waves based on frequency in time domain computations, and it is unclear if it is possible to con-
struct a practically useful and stable PML for such situations.

From an application point of view, the instability discovered in [28] is significant. Not only it is present in many engineer-
ing solid-mechanics problems where wave guides are present, but the waves from which it origins also occur in seismolog-
ical simulations on truncated domains. As we will see below the instability is also present when there is one free and one
clamped boundary inside the PML. In addition, in additional experiments (not shown here) it is shown that the same type
of instability can occur for stratified media where the internal interfaces act as wave guides and backward propagating
trapped modes can be excited. Fortunately the super-grid-scale method generalizes easily to systems in second-order form
and may be used as a stable alternative to PML.

3.3.3. Numerical experiments
We demonstrate the instabilities of the PML by solving (28) and (29) in a wave guide ðx1; x2Þ 2 ð�1;1Þ � ½�2;0� with

traction-free top and bottom. The initial data are a pulse centered at ðx1; x2Þ ¼ ð�2;�0:5Þ:
u1ðx; y; 0Þ ¼ 5ðx1 þ 2Þe�100ððx1þ2Þ2þðx2þ0:5Þ2Þ;

u2ðx; y; 0Þ ¼ 5ðx2 þ 2Þe�100ððx1þ2Þ2þðx2þ0:5Þ2Þ:
We truncate the waveguide to the left at x1 ¼ �3 by adding a layer of width 0.4. To the right we truncate at x1 ¼ 4 with
Dirichlet conditions for the displacement. The layer is either the PML derived in Appendix B or the damping layer obtained
by adding
rðxÞ @
4@u

@x4@t
; rðxÞ @

4@v
@x4@t

; ð30Þ
to the right-hand side of (28) and (29). For this example we used an existing curvilinear solver, so rather than slowing down
the waves by changing the wave speed we simply applied a smooth stretching of the x1 coordinate. For the damping layer the
equations are discretized as described in [29]. A derivation of the PML and its discretization is found in Appendix B.
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With the above initial data u1 and u2 become antisymmetric and symmetric about x1 ¼ �2 and we can measure the error
as
eðtÞ ¼
Z 0

�2

Z 1

0
ðu1ð�2þ x; yÞ þ u1ð�2� x; yÞÞ2 þ ðu2ð�2þ x; yÞ � u2ð�2� x; yÞÞ2 dxdy

� �1
2

: ð31Þ
In Fig. 14 the relative error (normalized by half of the L2 norm of the initial data) is plotted as a function of time for the
PML and the super-grid layer with free surfaces at the top and bottom. The error in the damping layer is decreased as the
grid is refined with a factor between two and four. Compared to the level of the errors in the previous sections the errors
here are larger, due to the low-order (second) accurate method used for the computations. For the grid size h ¼ 0:01 the
relative error is roughly 1% which is about the expected size for the number of points per wavelength (about 40) in the
present example. The error for the PML rises somewhat later than for the damping layer, but is increasing rapidly. The in-
crease is not a manifestation of lack of performance of the PML, but rather of the unstable trapped backwards propagating
modes.

4. Summary and future work

The application of the super-grid-scale method to linear hyperbolic systems was presented. The reduction of unbounded
to bounded domains was performed by smooth coordinate transformations and the damping of super-grid scales was
achieved by undivided differences. It was demonstrated by numerical experiments that the reflections caused by the damp-
ing are reduced drastically by using high-order undivided differences.

In numerical experiments with Maxwell’s equations it was found that the error converges at the order of the numerical
method, when high-order damping is used. The levels of the errors are comparable to those obtained with PML.

Two examples for which PML is unstable, the propagation of elastic waves in anisotropic media and in isotropic media
with free surface boundary conditions were also considered. It was found that the super-grid-scale method was both accu-
rate and stable for these problems.

We found the presented results encouraging but they can most likely be improved further. Some aspects that warrant
further investigation are (some pointed out by the anonymous reviewers):

(i) To optimize the damping for a particular spatial discretization the dispersion relation of that method can be used to
tune the viscosity to damp waves with the wrong group velocity. Such tuning will depend on the coordinate transform
used.

(ii) In this work the shape of the damping and stretching functions are chosen empirically based on experience and
numerical experiments. For a particular spatial discretization it should be possible to find (near) optimal damping
and stretching functions.
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Appendix A. A perfectly matched layer for the elastic wave equation on second-order form

We construct a PML in the x1-direction for (28) and (29). After Laplace transform in space (t ! s) and Fourier transform in
the tangential direction (x2 ! ik2) they become
qs2û1 ¼
d

dx1
2lþ kð Þ d

dx1
û1 þ kik2û2

� �
þ ik2 l d

dx1
û2 þ ik2û1

� �� �
; ðA:1Þ

qs2û2 ¼
d

dx1
l d

dx1
û2 þ ik2û1

� �� �
þ ik2 k

d
dx1

û1 þ 2lþ kð Þik2û2

� �
: ðA:2Þ
Inserting modal solutions û1 ¼ /̂1ejx1 , û2 ¼ /̂2ejx1 into (A.1) and (A.2), we obtain the eigenvalue problem
qs2û1 ¼ j 2lþ kð Þjû1 þ kik2û2ð Þ þ ik2 l jû2 þ ik2û1ð Þð Þ; ðA:3Þ
qs2û2 ¼ j l jû2 þ ik2û1ð Þð Þ þ ik2 kjû1 þ 2lþ kð Þik2û2ð Þ: ðA:4Þ
In the layer we would like the solutions to decay exponentially and thus postulate the modal solution
û1

û2

� �
¼ /̂1

/̂2

 !
ejx1þ j

sþa

R x1
0

rðzÞdz
: ðA:5Þ
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Taking d=dx1 of, for example, the first row of (A.5) we get
jû1 ¼ 1� rðx1Þ
sþ aþ r

� �
d

dx1
û1: ðA:6Þ
To localize in time we introduce the auxiliary variables
ĝð1Þ ¼ � 1
sþ aþ rðx1Þ

dû1

dx1
; n̂ð1Þ ¼ � 1

sþ aþ rðx1Þ
dû2

dx1
;

and
ĝð2Þ ¼ � 1
sþ aþ rðx1Þ

2lþ kð Þ d
dx1

û1 þ rðx1Þĝð1Þ
� �

þ kik2û2

� �
;

n̂ð2Þ ¼ � 1
sþ aþ rðx1Þ

l d
dx1

û2 þ rðx1Þn̂ð1Þ
� �

þ ik2û1

� �� �
:

Inverting the transforms we obtain the following set of equations:
q
@2u1

@t2 ¼
@

@x
2lþ kð Þ @u1

@x
þ rgð1Þ

� �
þ k

@u2

@x2

� �
þ @

@x2
l @u2

@x
þ rnð1Þ þ @u1

@x2

� �� �
þ rgð2Þ; ðA:7Þ

q
@2u2

@t2 ¼
@

@x1
l @u2

@x1
þ rnð1Þ

� �
þ l @u1

@x2

� �
þ @

@x2
k
@u1

@x1
þ rgð1Þ

� �
þ 2lþ kð Þ @u2

@x2

� �
þ rnð2Þ; ðA:8Þ

@gð1Þ

@t
þ ðaþ rÞgð1Þ ¼ � @u1

@x1
; ðA:9Þ

@nð1Þ

@t
þ ðaþ rÞnð1Þ ¼ � @u2

@x1
; ðA:10Þ

@gð2Þ

@t
þ ðaþ rÞgð2Þ ¼ � @

@x1
2lþ kð Þ @u1

@x1
þ rgð1Þ

� �
þ k

@u2

@x2

� �
; ðA:11Þ

@nð2Þ

@t
þ ðaþ rÞnð2Þ ¼ � @

@x1
l @u2

@x1
þ rnð1Þ

� �
þ l @u1

@x2

� �
: ðA:12Þ
A.1. Discretization

Discretization of the above equations is based on the one described in [29]. The spatial derivatives in (A.9) and (A.10) are
discretized by second-order accurate centered-finite difference approximations. The time derivatives in new Eqs. (A.9)–
(A.12) are discretized by the second-order Adams–Bashforth method.

Appendix B. The perfectly matched layer used in Section 3.2.1

The perfectly matched layer used in Section 3.2.3 is:
@Ez

@t
¼ g

@Hy

@x
þ cr/ð2Þ

� �
� @Hx

@y
;

@Hx

@t
¼ � @Ez

@y
;

@Hy

@t
¼ g

@Ez

@x
þ cr/ð1Þ

� �
;

@/ð1Þ

@t
þ cr/ð1Þ ¼ � @Ez

@x
;

@/ð2Þ

@t
þ cr/ð2Þ ¼ � @Hy

@x
:

ðB:1Þ
In the presented computations we use c ¼ 30, and r determined by (25) with p ¼ 3, q ¼ 4.
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